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Abstract

Similarity plays a central role in spectral library search. The goal of spectral library search

is to identify those spectra in a reference library of known materials that most closely match

an unknown query spectrum, on the assumption that this will allow us to identify the main

constituent(s) of the query spectrum. The similarity measures used for this task in software

and the academic literature are almost exclusively metrics, meaning that the measures obey the

three axioms of metrics: (1) minimality; (2) symmetry; (3) triangle inequality. Consequently,

they implicitly assume that the query spectrum is drawn from the same distribution as that of

the reference library.

In this paper, we demonstrate that this assumption is not necessary in practical spectral

library search and that in fact it is often violated in practice. Although the reference library may

be constructed carefully, it is generally impossible to guarantee that all future query spectra

will be drawn from the same distribution as the reference library. Before evaluating different

similarity measures, we need to understand how they define the relationship between spectra.

In spectral library search, we often aim to find the constituent(s) of a mixture. We propose
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that rather than asking which reference library spectra are similar to the mixture, we should

ask which of the reference library spectra are contained in the given query mixture. This

question is inherently asymmetric. Therefore, we should adopt a nonmetric measure. To

evaluate our hypothesis, we apply a nonmetric measure formulated by Tversky known as the

Contrast Model and compare its performance to the well-known Jaccard similarity index metric

on spectroscopic data sets. Our results show that the Tversky similarity measure yields better

results than the Jaccard index.

1 Introduction

Spectral library search is often used to identify the main constituent(s) of an unknown substance

based on its spectrum. The aim is to find the closest matches (or hits) to the given query spectrum

on the basis of its computed similarity measure to each entry in the reference library, sorted in

order of decreasing similarity. To understand this process fully, it is important to understand how

similarity defines the relationship between two objects and its consistency with human perceptions

of similarity. The choice of similarity measure is fundamentally important and it is one of the main

challenges to determine which similarity measure should be selected for the task of interest.

The ideal similarity measure needs to be relevant to the given task of interest.1 There are numer-

ous similarity measures in the literature, most satisfying the metric axioms: minimality, symmetry

and triangle inequality2 (which will be explained below in Section 1.1). Existing similarity mea-

sures (even if they are not metrics) implicitly assume that the query/test spectra are drawn from the

same distributional space as that of the reference library. These measures are best at finding exact

matches (or hits). But in many practical spectroscopic applications, the objective is to find close or

related matches to the query spectrum rather than just finding exact matches. The query spectrum

may come from a mixture of substances which may be present in the reference library either as

separate components in pure form or as a mixture with proportions that might not necessarily be

the same as those in the query.3 Therefore, the query spectra may not be drawn from the same

distributional space as that of reference library. As a result, the metric axioms will be violated;
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they may also be unnecessary (as detailed in Section 2).

In this paper, we propose that in such scenarios, what is needed is a contains concept, as

opposed to similarity metrics. Similarity metrics focus on finding the reference library spectra most

or exactly similar to the given query spectrum. On the other hand, a contains concept shifts the

focus towards finding the reference library spectra that are contained in the given query spectrum.

This is more directly relevant to the task of identifying constituent(s) reference spectra accurately.

The next subsection gives an overview of the metric axioms and explains how these metric ax-

ioms are violated in human similarity judgement. Section 2 discusses whether these metric axioms

are needed in spectral library search and show examples of where they are violated in practice.

Section 3 describes the proposed contains concept. In Section 3.1, to evaluate our hypothesis, we

adopt Tversky's contrast model and compare its performance with that of the well-known Jaccard

similarity index metric. We choose the Jaccard metric for this work because it is widely used, and

we choose Tversky's contrast model because (as will be discussed in Section 3.1), it is a direct gen-

eralization of the Jaccard metric. The Tversky measure was proposed in the context of reflecting

human intuitions of similarity. We apply it here in the new context of spectral library search using

spectroscopic data sets.

Section 4 describes the data sets, experimental methodology and performance measure used to

evaluate the results. In addition, we also analyse the commonly used similarity measures to show

that they obey the symmetry axiom. In Section 5 the results are discussed. Finally, in Section 6

we draw conclusions. It is concluded from the results that a contains concept improves spectral

library search performance in comparison to commonly used similarity metrics and also, it captures

similarity in the manner it is perceived.

1.1 The Metric Axioms

When considering measurements of similarity and dissimilarity, the metric axioms (listed below)

define whether a measurement can be considered to be a geometric distance metric. Geometric

measurements of similarity are the most influential approaches used and have a long and successful
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history in matching data (see for example, Shepard5,6 for an overview). These methods are based

on the assumption that objects are represented as points in some coordinate space, so that the

metric distance between the points reflects the similarity between the two objects.7 Similarity can

be derived from a distance function in this space, using an inverse relationship: the shorter the

distance between two objects, the more similar they are. They are exemplified by multidimensional

scaling (MDS) models.8 The general form of an equation for geometric distance between two

objects is:9

D(i, j) =

[
n∑

k=1

|Xik −Xjk|r
]1/r

(1)

where Xik is the value of Object i on dimension k, Xjk is the value of Object j on dimension

k, n is the number of dimensions, and the value of r defines the distance metric. When r = 1,

D(i, j) =
∑
|Xik −Xjk|, it is called the City-block distance or the Manhattan distance. When

r = 2, D(i, j) =
[∑
|Xik −Xjk|2

]1/2
, it is known as Euclidean distance, which is widely used in

chemometrics.2 The best value of r generally depends on the nature of particular objects and also

on the objective in making the comparisons.10,11

The geometric methods of similarity are based on the following three metric axioms, given

objects A, B and C in the multidimensional space and a metric distance function D:

1. Minimality: The distance from ObjectA to ObjectB will be 0 if they are identical; otherwise

it will be positive, i.e. D(A,B) ≥ D(A,A) = 0.

2. Symmetry: The distance from Object A to Object B is same as the distance from Object B

to Object A, i.e. D(A,B) = D(B,A).

3. Triangle Inequality: The sum of distances from A to B and B to C will always be greater

than or equal to distance fromA toC, i.e. D(A,B)+D(B,C) ≥ D(A,C). As mentioned in

above point, distances are symmetric so the triangle inequality definition can also be written

as D(B,A) +D(B,C) ≥ D(A,C) which is used by Gower and Legendre.12
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1.2 Limitations of the Metric Axioms

Some limitations of the above axioms have been addressed by several critics, specifically in the

psychology community where the goal is often to model human understanding of similarity. Nonethe-

less, measurements based on the metric axioms dominate and are widely used.4,7,13 Attneave is one

of the early researchers who noticed some weaknesses of the geometric methods of similarity.13

Later, Tversky 4 provided empirical results that seem to be in conflict with each of the metric

axioms, again in the context of modeling human intuition of similarity. He also suggested an alter-

native theoretical approach to similarity, based on feature matching known as the Contrast Model

(explained in Section 3.1). Shepard 8 also criticized the metric requirements of the geometric mea-

sures.

Minimality may be violated where an object is identified as another object more frequently

than it is identified as itself. Tversky 4 cited that the probability of identifying two identical objects

as the same is not constant for all objects and if these identification probabilities are treated as a

similarity measure, then it violates minimality.

The symmetry axiom states that the similarity value is the same in both directions, i.e., from

Object A to B and from B to A. Tversky 4 cited various examples explaining how the direction

matters in similarity and the symmetric assumption does not always hold in human intuition; for

example, he stated that how in general it is said that “the son resembles the father” rather than “the

father resembles the son” and “an ellipse is like a circle” rather than “circle is like an ellipse”. In

his study of similarity of countries with 21 pairs of countries as objects, he found that participants

mostly chose the less prominent country as the subject and the more prominent country as the

referent. Hence, the asymmetric similarity occurs when an object with more salient features is

judged as less similar to an object with less salient features than vice versa.

The triangle inequality states that when ObjectA is similar to ObjectB, and ObjectB is similar

to Object C; then Object A is similar to Object C. Tversky 4 has noted that the triangle inequality

cannot be formulated in ordinal terms, and it cannot be readily refuted even with interval data. Its

violation, however, can be exemplified using three objects A, B and C; when A (e.g., lamp) and
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B (moon) share an identical feature (light), and B (moon) and C (ball) share an identical feature

(shape), but A and C does not share any feature in common.14

Section 2 discusses the violation of the metric axioms and their necessity in spectral library

search. It also proposes a contains concept as an alternative to similarity metrics.

2 Metric Axioms in Spectral Library Search

The basic operation of library search is to compare an unknown query item q with known items

in the reference library L = {l1, l2..ln}, to find the best matches (or hits) sorted in the order

of decreasing similarity (or increasing distance). Almost always, a distance metric or similarity

metric is used. It is computed for a query item q to each reference library item, D (q, li) or S(q, li)

where i is from 1→ |L|, D is the distance metric and S is the similarity metric.

Distance and similarity metrics are strongly related and these terms are often used interchange-

ably, though strictly speaking they are reciprocal concepts i.e. when distance decreases, similarity

increases and vice versa. A distance value is typically in the range [0 −∞), with value 0 corre-

sponding to two identical objects, while similarity values are typically bounded in a range such as

[0−1], with the maximum value corresponding to two identical objects. For example, a commonly-

used transform from a distance to a distance-based similarity metric is:

S(a, b) =
1

(1 +D(a, b))
(2)

Note in this paper we use the term similarity metrics, as it is commonly used, to refer to

distance measures that satisfy metric axioms. By definition, metric distances must be symmetric

and obey the triangle inequality, as defined above. Similarities are also symmetric but do not obey

the triangle inequality: it can easily be shown that if a distance metric obeys the triangle inequality,

the corresponding similarity metric from Eq. 2 will not.

Metrics are widely used for searches even when queries are not drawn from the same population

as the reference library. If there is no distributional difference between the reference library and
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the queries, it is equally likely that an item could be in the library set or in the query set, so a

symmetric measure makes sense. In practice, however, this assumption is often violated. Objects

to be included in reference libraries are often carefully selected and may not be drawn from the

same distribution as the query set. For example, consider a reference library with four pure spectra

p1, p2, p3 and p4 and a ternary query mixture p1 + p2 + p3. When the similarity of the query

mixture to pure spectrum p1 is measured, the similarity coefficient reduces because of the presence

of extra features (due to p2, p3). We want these extra features to make a small, or no, contribution

to the similarity value as the user is interested in finding the reference library spectra contained in

the query spectrum. This is an asymmetric relationship. In such scenarios, we propose to use a

contains concept; defined in Section 3.

While the triangle inequality has a clear mathematical definition that is easily verified, it does

not always map well to real-world intuitions of similarity. According to Tversky 4 the triangle

inequality axiom implies that if Object A is quite similar to Object B, and Object B is quite

similar to Object C, then Object A and C cannot be much dissimilar to each other. For example,

consider three mixtures M1(p1 + p2), M2(p2 + p3) and M3(p3 + p4). The mixture M1 is similar

to mixture M2 (because of the presence of p2); mixture M2 is similar to mixture M3 (because of

the presence of p3); but mixture M3 is not similar to mixture M1. This indicates that the triangle

inequality is violated.

From the discussion above, it is concluded that the symmetry and the triangle inequality can

be violated in spectral library search. We also note that the minimality axiom is applicable as we

would expect the maximum similarity coefficient for identical spectra.

3 Contains Concept

Our proposed contains concept modifies the focus of library matching. Instead of seeking to iden-

tify the reference library spectra that are similar to the given query spectrum, it focuses on finding

the reference library spectra contained in the given query mixture. Therefore, it will take into
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account the inherent asymmetry. This will be useful in spectral library search in real applica-

tions. Consider the example mentioned above, the contains concept will seek to find which of the

reference library spectra p1, p2, p3 and p4 are contained in a given mixture spectrum p1 + p2 + p3.

On the other hand, when we use similarity metrics, the question is whether the query item is

similar to a reference library item. The validity of this question comes into doubt in spectral library

search; we seek to determine the presence of a particular substance in a mixture, as a mixture will

contain additional features because of the presence of the other constituents. By using a contains

concept, we focus more on the features present in the reference library item than on the additional

features present in the query item. This way, we get a better similarity value.

The relationship between the contains concept and the metric axioms is as follows:

1. It satisfies the minimality axiom. Two identical objects will, obviously contain each other.

2. It is directional, as it depends on whether we ask if a query item contains any of the ref-

erence library items or if any reference library item contains the query item. As a result,

the similarity measure from the query item to the reference library item will not be same as

the similarity measure from the reference library item to the query item. Specifically, we

propose to give more importance to the features present in reference library. For example,

when we are searching a spectral library for a given query item, which can be a pure or a

mixture of two or more substances, we will be more concerned with the features present in

a spectral library reference item.

3. The contains concept considers asymmetric similarity, therefore, direction must be consid-

ered when assessing triangle inequality. A directional triangle inequality holds, for example,

if Object A contains Object B, and Object B contains Object C, then Object A contains

Object C, i.e., S(A → C) ≤ S(A → B) + S(B → C). However, when direction is not

considered triangle inequality can be violated easily. Taking the example mentioned above,

S(A→ C) � S(B → A)+S(C → B). The reason for this inequality is that Object B does

not contain Object A and Object C does not contain Object B; rather, Object B is contained
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by Object A and Object C is contained by Object B.

Some researchers3,15–18 have identified the presence of inherent asymmetry in chemical sim-

ilarity measures. Khan and Madden developed a new distance measure Modified Euclidean for

spectral library search, which computes the distance between reference and query spectrum using

asymmetric weights.3 In Modified Euclidean, they assigned weights according to the amplitude of

intensity of query spectrum as compared to reference spectrum and to presence/absence of peaks at

a given wavenumber in the query spectrum as compared to the reference spectrum. Despite being

called Modified Euclidean Distance (because it modifies standard Euclidean distance), it itself is

not a distance metric as it is asymmetric. Bradshaw 15 used the Tversky model of similarity in

Daylight Chemical Information Systems on structural descriptor dataset. Bradshaw 16 discussed

that in chemical information systems it is fundamental to look for a super structure. Mestres and

Maggiora17 discussed and presented a generalized asymmetric form of field-based molecular sim-

ilarity indices. An empirical study by Chen and Brown 18 presented the evidence of asymmetry

in chemical similarity measures and used Tversky similarity coefficients for experimenting and

suggested that using asymmetric coefficients is beneficial for database searching. However, these

papers do not discuss whether the metrics are really needed and how they are violated in practical

applications.

To evaluate our hypothesis, we have adopted Tversky's contrast model described in the next

section. This model is appropriate to represent the proposed contains concept and to test our

hypothesis. It uses a feature based binary representation and computes similarity as a linear com-

bination of common and distinctive features by allowing different weights on each of them. It

is also appealing because it is a direct generalization of the Jaccard metric that is widely used in

spectroscopic library search.

3.1 The Contrast Model

In the experimental psychology literature, there is a large amount of research concerned with sim-

ilarity.19 It is one of the most central theoretical concepts in psychology.4,20 It is strongly linked
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to knowledge and behavior. It serves as an organizing principal in human perception.4,7,9 Shepard

inferred that similarity is a measure of the degree to which one stimuli generalizes to other.6 It

“refers to the outcome of a comparison among entities, usually a comparison based on many of the

entities properties. Objects are similar to the degree that they have features in common and do not

have distinctive features”21, p. 4. And, “for similarity to be a useful construct, one must be able to

specify the ways or respects in which two things are similar”20, p. 254. The concept of similarity is

strongly attached to knowledge. In psychology, the work and generalization on similarity is hugely

influenced by Shepard’s work on similarity and categorization.6,8,22

Tversky,4 a psychologist, provided empirical evidence from different domains on the weakness

of the metric axioms and suggested an alternative approach to geometric methods of similarity

known as the contrast model. Unlike geometric methods of similarity, which represent objects as

points in some coordinate space, Tversky's contrast model represents objects by a set of features

and similarity is defined as a linear combination, or a contrast, of the counts of their common

and distinctive features with different weights on each of them. The object representation as a

set of features is viewed as the result of a prior process of extraction and compilation. Tversky

defines that features may correspond to components of the object or they may be either concrete

or abstract properties. The contrast model of similarity measures two objects to be more similar if

they have more common features and fewer distinctive features. They are less similar if they have

more distinctive features and less common features. The term feature usually denotes the value of

a binary variable. However, it is also applicable to ordinal or cardinal variables.

Let a and b be two objects represented by feature set A and B respectively. Then, the similarity

of a to b, denoted by S(a, b), is a linear combination of common and distinctive features,4,7 i.e.

S(a, b) = θf(A ∩B)− αf(A−B)− βf(B − A) (3)

where:

• f(A ∩B) represents set of common features of A and B,
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• f(A−B) represents distinctive features of A that B does not have,

• f(B − A) represents distinctive features of B that A does not have,

• f satisfies feature additivity, i.e. f(A ∪B) = f(A) + f(B), whenever A and B are disjoint,

• f and S are interval scales

The parameters θ, α, and β reflect weights given to common and distinctive features and

θ, α, β ≥ 0.

The contrast model does not define a single similarity scale, but rather a family of scales char-

acterized by different values of parameter θ, α, and β. It expresses the similarity between objects

as a weighted difference of the count of their common and distinctive features. Another form of

the contrast model is the ratio model, given by:

S(a, b) =
f(A ∩B)

(f(A ∩B) + αf(A−B) + βf(B − A))
, α, β ≥ 0 (4)

where similarity is normalized so that S lies between 0 to 1. It is a generalized form of the

contrast model.4

The contrast model is appropriate to represent our contains concept as it is a weighted com-

bination of common and distinctive feature counts. By weighing reference spectra features more

heavily than a query spectra features i.e. α > β, we focus more on referent features contained

in query spectra rather than on the additional features present in query spectra. As a result, the

presence of those additional query features will have less of an effect on the measuring coefficient.

3.2 Applications for Contains

Our proposed Contains concept is of interest in many practical applications. In Section 5 we

evaluate the necessity and appropriateness of the contains as opposed to similarity metrics on

datasets from Raman Spectroscopy and Mass Spectrometry experimentally. Chen and Brown 18

evaluated the performance of Tversky measure (i.e. the one suitable to represent Contains) in
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computer-assisted drug discovery using two large pharmaceutical databases, the NCI anti-AIDS

database and the J&J corporate database. They concluded that the relative weights on the training

and the query object can be adjusted to more effectively achieve different purposes of similarity.

We expect to see more applications of our proposed concept in scenarios where there is a unique

fingerprint or representation of training objects and the user aims to identify which of them are

contained in the test object. For example, it could prove to be useful in the task of identification

of tandem mass spectra in data sets generated by SWATH.23 In a general experimental setup,

each tandem mass spectrum used for database searching contains fragment ions from a single

peptide.24 However, SWATH produces highly complex and composite fragment-ion spectra where

our proposed Contains concept might be of great interest and benefit as the user is interested in

finding all the tandem mass spectra contained in complex and composite spectra.

Section 4 details the experiments we have conducted to evaluate the Tversky similarity measure

on spectroscopic data and its results. Previous papers15,18 have implemented Tversky's contrast

model for assessing chemical similarity using structural descriptor dataset. In our experiments, we

reduce the spectrum into a binary feature based representation using peaks presence/absence over

a specified range as its features, i.e. 0 if a peak (feature) is absent or 1 if peak is present over a

specified wavenumber range.

4 Materials and Methods

This section presents details about the datasets, the pre-processing steps taken, the procedure we

adopted to perform spectral library search and the methodology adopted to evaluate the perfor-

mance of the similarity measure.
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4.1 Description of the Dataset

4.1.1 Extended Chlorinated

Extended Chlorinated dataset was one that was first described by Conroy.25 The dataset contains

433 spectra, each having 2473 channels/data-points. The dataset contains both pure spectra of

solvents, spectra of various mixtures and spectra doped with varying degree of fluorescence. The

dataset is made using 29 solvents specified in Table 1. The reference library consists of the pure

solvents. For a few solvents, there are multiple spectra. The total number of spectra in the reference

library is 34. The remaining 399 spectra are used as a test set. On visual inspection of them, we

observed 22 spectra with large fluorescence responses that dominated the entire range because of

the contamination of mixtures with high concentration of rhodamine B. Since we did not include

any pre-processing to attempt to correct such effects, these were removed as outliers from the

dataset prior to any experiments. This results in a testing data set containing 377 spectra of various

mixtures.

Table 1: List of solvents used along with different grades25

CHLORINATED NON-CHLORINATED
111-Trichloroethane Ethanol, Cyclopentane, Acetophenol

Chloroform n-Pentane, Xylene, Nitromethane
Dichloromethane Dimethylformamide, Tetrahydrofuran
Chlorobenzene Diethyl Ether, Petroleum Ether

Carbontetrachloride Cyclohexane, Acetone, Toluene
Acetonitrile, 2-Propanol, 14-Dioxane

Hexane, Methyl Alcohol, Ethyl Acetate
1-Butanol, Cyclohexane, 1-Propanol

Iso-pentane, Benzene

4.1.2 Micromass

The Micromass dataset is taken from UCI26 and first appeared in Mahé et al..27 The aim is to

identify microorganism from the mass spectrometry data. Each spectrum is represented by a vector

x ∈ <p; p is the number of channels or bins involved in the peak-list representation. Each entry
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in the vector x represents the intensity of the peaks found in that bin. We note this as a Contains

query where the task is to predict which of the K reference bacterial species are contained in the

query spectrum. The main objective is similar to the spectral library search, i.e. to identify the

components of the bacterial mixture. A pre-specified reference and the test set is provided. The

reference data set consist of 571 pure mass spectra of 20 Gram positive and negative bacterial

species covering nine genera. The test dataset contains 360 mass spectra. The test spectra were

represented by two pairs of strains, which are mixed according to nine different concentration

ratios. We have use these pre-specified sets for our experiments.

4.2 Data Pre-processing

The spectra in the dataset are normalized using min-max normalization. Given a spectrum S =

[s1, s2, ..., sN ], the normalized spectrum S
′ defined as:

si
′
=

si −min
max−min

(5)

where min and max are the minimum and maximum values of the original spectrum. Each

normalized spectrum is scaled between 0 and 1.

4.3 Data Transformation

Encoding as a pattern of bits is one of the common strategies to increase the efficiency of database

searching.28 Grotch was the first to report the use of peak/no peak (or binary) encoding of mass

spectra for library searches.29 If a particular peak is present at a particular position over a specified

range, then its corresponding bit is set to 1 in the binary feature vector, otherwise it is set to 0. Very

minor peaks are excluded by using an intensity threshold, i.e. the presence of peak above a given

intensity threshold is coded as 1 otherwise it is coded as 0. In this representation, it is only the

presence/absence of particular peaks which sets/unsets the bit and the peak height is not consid-

ered. We have used this approach to transform spectra into binary vectors. As Micromass dataset
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considers the peak-list representation for each mass spectrum, the spectrum has been normalised

and then transformed into binary-representation. However Extended Chlorinated dataset consist

of raw spectrum in which we need to find the peaks. Therefore, we developed software in Java to

implement the procedure. For detecting the peaks, the MATLAB function peakfinder 30 is used and

to interact with MATLAB, a Java API called matlabcontrol31 is used. This peak detection function

uses the alternating nature of derivatives along with amplitude threshold to find the local maxima

or minima. For our experiments, we save the peak list for each of the pure spectra present in our

reference library. In theory, measures for our contains will not differ in response to the selection of

different intensity thresholds in cases when the same threshold settings are applied. But it needs to

kept in mind that in practice the peak intensity may reduce in a query spectrum due to the presence

of its other constituents.

4.4 Similarity Measures

This section details the similarity measures used, i.e., the Jaccard coefficient and the Tversky

coefficient, to conduct our experiments. We also show that the commonly used similarity measures

obey the symmetry axiom.

Given two objects A and B, we define b to be the number of features present in Object A but

not in Object B, c to be the number of features present in Object B but not in Object A, a to be the

number of features present in both objects, d to be the number of features absent in both objects.

In addition, the total number of features measured are n = a + b + c + d. The total number of

features present in Object A is (a + b), and the total number of features present in Object B is

(a+c). The binary association coefficients or similarity measures are based on a, b, c and d. These

are described by the presence or absence of features illustrated in Table 2.

Gower32 noted that when the absence of a feature in both objects is deemed to convey no

information, then d should not occur in the similarity measure. The Jaccard similarity coefficient,

also known as the Tanimoto similarity measure,33 is the most widely used association coefficient.34

It defines similarity as:
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Table 2: Four binary cases for comparing Object A and Object B: 1 denotes a feature present, 0
denotes a feature absence2

Object A Object B
1 1 a
1 0 b
0 1 c
0 0 d

Ta(A,B) =
a

a+ b+ c
(6)

The Tversky contrast ratio model defines similarity coefficient as:

Tv(A,B) =
a

αb+ βc+ a
(7)

The Tversky contrast ratio model can be regarded as a generalization of the Jaccard similarity

measure: if α = β = 1 we get the Jaccard coefficient, which is a metric. In our experiments, we

have adjusted the parameter α from 0 to 1. The parameter β is calculated as 1− α.

For performance comparisons, the Jaccard similarity index measure is chosen on the basis of

following studies. Nikolova and Jaworska,1 Monev 35 and Willett et al. 36 reviewed binary associ-

ation coefficients in chemical information system. Willett 37 evaluated 13 similarity measures for

binary fingerprint code. Chen and Reynolds 38 evaluated the effectiveness of Euclidean distance

and the Jaccard coefficient on 2D fragment based descriptors. The results from these studies indi-

cated that the Jaccard coefficient gives the best performance. The Jaccard similarity index metric

is a distance metric that satisfies all three metric axioms. Therefore, it is used for comparing the

performance of the Tversky measure.

In the next section, we check the symmetry axiom on the commonly used binary similarity

measures.
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4.4.1 Symmetry Axiom

For completeness Table 3 shows an analysis of the commonly used binary similarity indexes (men-

tioned in Brereton2, p. 78). It lists the directional similarity coefficients i.e. S(A,B), the similarity

from A to B and S(B,A), the similarity from B to A. Consider the two objects A and B with

a (feature count present in both objects), b (feature count present in object A but absent in B), c

(feature count present in object B but absent in A) and d (feature count absent in both objects).

When computing S(A,B) and S(B,A), the number of common features present/absent i.e. a and

d remains the same; while the values of distinct feature counts i.e., b and c, are swapped. The table

below shows the resulting formula for each. It can be observed that for all the commonly used

measures listed below S(A,B) is equal to S(B,A). Therefore, these measures are symmetric,

however as we have discussed symmetry is not needed in spectral similarity search.

Table 3: Symmetry axiom check on binary similarity measures (from Brereton 2, p. 78)

Similarity Obeys symmetry
Similarity Index S S(A,B) S(B,A) axiom?(Y/N)

Jaccard Similarity Index a
a+b+c

a
a+c+b

Y

Simple matching a+d
a+b+c+d

a+d
a+c+b+d

Y

Sokal and Sneath (a) a
[a+2(b+c)]

a
[a+2(c+b)]

Y

Rogers and Tanimoto (a+d)
[a+2(b+c)+d]

(a+d)
[a+2(c+b)+d]

Y

Sorensen 2a
(2a+b+c)

2a
(2a+c+b)

Y

Gower and Legendre [a−(b+c)+d]
(a+b+c+d)

[a−(c+b)+d]
(a+c+b+d)

Y

Ochiai a√
(a+b)(a+c)

a√
(a+c)(a+b)

Y

Snockal and Sneath (b) ad√
(a+b)(a+c)(d+b)(d+c)

ad√
(a+c)(a+b)(d+c)(d+b)

Y

Pearson‘s ϕ ad−bc√
(a+b)(a+c)(d+b)(d+c)

ad−cb√
(a+c)(a+b)(d+c)(d+b)

Y

Russell and Rao a
(a+b+c+d)

a
(a+c+b+d)

Y
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4.5 Methodology for Measuring Search Performance

The performance of spectral library search is evaluated using retrieval accuracy. In our experi-

ments, we compute the similarity coefficient (using both Eq. 6 and 7) between a query spectra and

each of the reference library pure spectra. Pure spectra with a similarity coefficient greater than the

specified threshold are included in the hit list for that given query. This hit list is then compared

to the true list of constituents of the query spectra to find the number of relevant retrieved items.

Then, the value of retrieval accuracy for ith query spectra is computed using:

RetrievalAccuracyi =
#(Relevant retrieved items)i
#(Total retrieved items)i

(8)

This value will be within the range [0, 1]. In cases where the hit list is empty, a retrieval

accuracy of zero is reported. Next, an average value of retrieval accuracy across the full test set is

computed. The average retrieval accuracy over the test set is calculated using:

AverageRetrievalAccuracy =

∑n=Number of test spectra
i=1 RetrievalAccuracyi

Number of test spectra
(9)

We report the average retrieval accuracy percentage in the results. In addition to this, we also

report the number of query spectra for which we do not retrieve any hits.

4.6 Overall Procedure

The procedure followed to evaluate the performance is described in Algorithm 1.
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Data:
R: A reference library containing pure spectra
Result:
RA%avg: Average retrieval accuracy percentage over the test set
No Hits: Number of spectra with no hits
input:

T: A test set containing query spectra
ξ: Similarity threshold

local:
RA: A vector of retrieval accuracy for each query spectrum
s: Similarity coefficient
Hits: A vector of the matches(or hits) retrieved
Peaktesti: List containing peaks positions found in spectrum i of T
Peakrefj : List containing peaks positions found in spectrum j of R
for j = 1→ |R| do

Peakrefj
for i = 1→ |T | do

initialize Hitsi = 0, RAi = 0

find Peaktesti
for j = 1→ |R| do

compute a, b and c (mentioned in Section 4.4) by comparing Peaktesti with Peakrefj
compute s (using either Eq. 6 or 7)
if s > ξ then

ADD to Hitsi
if |Hitsi| = 0 then

RAi = 0

No Hits← No Hits+ 1
else

compute RAi (see Section 4.5)
compute RAavg (using Eq. 9) at specified ξ

Algorithm 1: Overall procedure

5 Results

Figures 1 and 2 report the results for Extended Chlorinated and Micromass datasets respectively.

For the Tversky coefficient, the experiments are conducted with varying values for α and β within

the range of [0, 1]. The performances of the different similarity measures are not compared at the
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same threshold value; because the formulae are different, the effects of thresholds will be different.

Therefore, we choose the threshold with the best retrieval accuracy for each approach and compare

these best-case results. It should be noted that when α is set to 0.5, then β becomes 0.5, the

resulting coefficient becomes symmetric. The threshold values tested ranged from 0.1 to 0.9 with

an increment of 0.05. Table 4 provides a summary of the best performance for each of the datasets

for both symmetric and asymmetric measures.

Table 4: A summary of the best performance results for the Extended Chlorinated and Micromass
dataset.

Dataset Measure RA%avg No Hits Threshold ξ Parameter α

Extended Chlorinated Jaccard 76.65 47 0.45 NA
Tversky 87.00 11 0.80 0.95

Micromass Jaccard 68.51 2 0.30 NA
Tversky 72.40 4 0.70 0.90

Note: NA (not applicable)

Figure 1(a), (b) report the average retrieval accuracy percentage over the test set and the number

of query spectra with no hits (or zero retrieval accuracy) at the specified similarity threshold levels

for the Extended Chlorinated dataset with varying values for α. The color scale shown in Figure

1(b) is inverted to the color scale shown in Figure 1(a) so that the same color corresponds to the best

performance (i.e. red). The Jaccard measure results at each threshold are provided in Supporting

Material. The best average retrieval accuracy for the Jaccard coefficient is 76.65% at a threshold of

0.45. The average retrieval accuracy shows that the symmetric similarity coefficient performs badly

when the threshold is high and there are lot of query mixtures for which nothing is detected. The

reason for this is that a mixture will have additional features in comparison to the pure substance,

and the Jaccard coefficient reduces due to these distinguishing features. However, if the threshold

is lowered then the performance improves. This illustrates that the Jaccard similarity index is

affected by mixtures not being drawn from the same distribution as the training/reference library

(which contains only pure solvents).

The best average retrieval accuracy for the Tversky measure is 87.00% with the parameter set-

ting (α = 0.95, β = 0.05) at the threshold of 0.8. The parameters α and β do influence the retrieval
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(a) Heat map for the average retrieval accuracy over
the test set. The red color indicates a better average
retrieval accuracy.

(b) Heat map for the number of spectra with no hits
over the test set. The red color indicates the lower
number of spectra with no hits.

Figure 1: Extended Chlorinated dataset results at specified threshold levels with varying parameters
values.

performance. The improvement in the performance is because the Tversky measure considers the

asymmetry. The peaks present in the reference spectra are weighed more than the peaks present in

query spectra. This is evident from Figure 1(a) where we clearly see an asymmetric pattern where

the better performance is where α > β. We also observe that we obtain better performance with

high similarity threshold levels. This is because of the lower weights on the distinctive features

present in query spectrum which consequently make less contribution comparatively to the Jac-

card measure. On decreasing the threshold the retrieval accuracy is reduced. This is because, by

reducing the similarity threshold, the possibility of false positives increases. On the other hand,

the retrieval accuracy for the Jaccard index improves until the threshold is reduced to 0.45. The

reason for this is that the similarity value reduces due to distinguishing features (or peaks). As

soon as the threshold is lowered, the Jaccard index is able to detect hits. However even with the

threshold=0.45, there are 47 query spectra with no hits (or matches). The number of test spectra

with no hits for the Tversky measure is 11, which is comparatively low when compared to the best

performance of the Jaccard index. When these spectra are further examined, it is found that for

8 spectra the peak detection algorithm did not detect some peaks in the query spectrum that are

present in the pure substance spectrum, at the specified peak detection setting. In the remaining
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spectra, we do detect the peaks in the query spectrum for some of its constituents; however, there

are comparatively more distinctive peaks present in the query spectrum thus lowering the coeffi-

cient value (β is set to 0.05). To be consistent with our results, we chose to have the same peak

detection parameter setting over the entire test set. Furthermore, from Figure 1(b) we observe that

when the threshold levels are reduced the number of spectra with no hits reduces.

(a) Heat map for the average retrieval accuracy over
the test set. The red color indicates a better average
retrieval accuracy.

(b) Heat map for the number of spectra with no hits
over the test set. The red color indicates the lower
number of spectra with no hits.

Figure 2: Micromass dataset results at specified threshold levels with varying parameters values.

Figure 2(a), (b) report the average retrieval accuracy percentage over the test set and the number

of query spectra with no hits (or zero retrieval accuracy) at the specified similarity threshold levels

for the Micromass dataset. The color scale shown in Figure 2(b) is inverted to the color scale

shown in Figure 2(a) so that the same color (i.e. red) corresponds to the best performance, as we

did for the Extended Chlorinated results. The Jaccard measure result is summarised in Supporting

Material. The best average retrieval accuracy for the Jaccard coefficient is 68.51% at a threshold

of 0.3. There are 2 spectra for which nothing was detected. We observe the same behaviour as

with the Extended Chlorinated dataset that with the increasing threshold the performance reduces.

Figure 2(a) clearly indicates that there is an asymmetric pattern with better performance inclined

towards the right i.e. when α is greater than β. From Figure 2(b) it is observed that when α
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is greater than β, the number of spectra for which no hits are retrieved are reduced along with

the improvement in the accuracy. Therefore, it increases the possibility of finding true matches.

The best average retrieval accuracy for the Tversky measure is 72.40% with the parameter setting

((α = 0.90, β = 0.10)) at the threshold of 0.7.

From the results, it is concluded that the Tversky measure used to represent our contains con-

cept yields better results when compared to the Jaccard similarity index metric. It is also concluded

that it is worthwhile to examine and incorporate nonmetric measures in library search rather than

being limited to metric measures: nonmetric measures can yield improvements in performance,

and even where they do not help, they do not degrade the performance. The nonmetric measures

also provide the advantage of an increased ability to comprehend similarity that is consistent with

intuitive human ideas of similarity. It is worthwhile to note that by using the Tversky measure we

increase the possibility of getting hits and also improve the retrieval accuracy, i.e. hits with true

positives or hits with relevant spectra.

6 Conclusions and Future Work

Similarity is the fundamental concept underlying spectral library search, so it is important to iden-

tify good measures for assessing similarity. Most of the similarity measures used in academic

work and existing software follow the metric axioms, i.e. minimality, symmetry and triangle in-

equality. Even those measures that are not metrics usually assume symmetry. The focus of this

paper has been to suggest that metric measures are not appropriate in many practical spectroscopic

applications. This is because the metric axioms that these measures obey are not necessary and

in fact are often violated in practice. Also, the implicit assumption observed by these measures

is that the queries are drawn from the same distributional space as of the training library, whereas

in real spectroscopic applications, the query items may not be drawn from the same distribution

as that of a reference library even if it is carefully constructed. In such scenarios, we propose to

use our contains concept which is inherently asymmetric as an alternative to similarity metrics.
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This concept asks which of the reference library spectra are contained in the given query spectrum

rather than finding reference library spectra that are most similar to the given query spectrum. This

paper provides a good starting point to understand the importance of defining and measuring the

concept of similarity. The measure should be able to reflect the similarity appropriate to the do-

main. Contains is useful in experiments where there is a unique representation or fingerprint of

spectrum in the training library and the user aims to identify the presence of these features in the

query spectrum.

Our hypothesis is evaluated by adopting the Tversky contrast model which is appropriate to rep-

resent our contains concept and comparing its performance to the Jaccard similarity index metric

for spectral library search. Retrieval accuracy is used to measure the performance. The perfor-

mance is evaluated on a Raman Spectroscopy and a Mass Spectrometry dataset. From the results,

it is seen that the Tversky measure yields better results with a retrieval accuracy of 87.00% at a

threshold=0.80 with parameters α = 0.95 and β = 0.05 for Extended Chlorinated data set, and

a retrieval accuracy of 72.40% at a threshold=0.70 with parameters α = 0.90 and β = 0.10 for

Micromass data set. The Jaccard index did not perform as well because of the reduction in the

similarity value due to the presence of distinguishing features. This study supports the hypothesis

that spectral library search performance can be improved by using nonmetric measures. Although

we tested our contains concept on data transformed to a binary feature based representation, it is

to be noted that it may not be limited to this representation. For future work, we will investigate

the applicability of our contains concept for continuous data. We also aim to present an approach

to find the optimal values of α and β for a given data set that works well on unseen data.
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Supporting Information Available

The Supporting Material includes the results in tabular format for the experiments performed in this

paper. This material is available free of charge via the Internet at http://pubs.acs.org/.
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Table 1: Average retrieval accuracy percentage on Extended Chlorinated data set with
varying parameter values at different thresholds.

 

 

 

 

 

 

 

 

 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.90 20.42 20.68 22.01 22.01 23.87 23.87 25.46 25.46 28.38 29.44 29.44 29.44 31.03 38.46 40.05 48.27 51.72 57.29 62.33 67.10 76.65 80.10

0.85 28.11 30.76 31.83 31.29 31.29 31.03 33.15 40.05 40.05 41.90 42.17 50.39 53.31 54.90 61.00 61.80 65.78 67.63 72.14 79.04 85.67 85.44

0.80 31.03 33.95 41.64 42.17 43.76 43.76 43.76 52.78 55.96 56.49 57.02 55.96 62.06 63.12 67.37 69.23 69.23 74.27 78.51 83.55 87.00 86.20

0.75 41.64 44.82 53.31 53.31 56.76 58.09 58.35 58.62 64.19 64.19 66.31 67.10 70.55 71.08 71.08 75.00 76.12 79.57 83.02 84.35 81.43 77.71

0.70 55.17 55.43 56.49 57.02 64.98 66.31 67.37 67.37 68.16 71.35 72.41 71.88 72.41 76.12 74.80 77.98 80.63 81.96 83.81 81.69 72.41 71.88

0.65 63.39 55.17 64.72 64.19 65.25 67.90 68.43 69.23 72.67 72.94 71.88 75.06 75.59 78.77 77.98 80.10 81.96 80.90 77.18 72.14 71.08 46.94

0.60 70.55 56.76 60.47 68.70 70.82 68.96 68.43 69.49 71.08 71.35 70.55 73.47 76.92 78.77 79.31 79.31 78.24 74.80 71.35 64.72 56.76 44.03

0.55 71.88 53.58 55.70 56.49 63.39 67.37 67.90 68.43 69.76 72.14 71.88 74.53 74.27 74.80 72.67 71.61 69.76 64.45 60.21 54.37 44.03 43.76

0.50 75.06 40.58 54.64 54.64 53.84 54.64 63.39 65.78 64.98 66.57 67.37 64.19 65.25 62.06 61.80 58.35 54.11 50.66 47.48 37.13 37.13 27.05

0.45 76.65 38.19 37.93 44.03 45.09 46.15 46.68 54.37 51.45 55.70 54.11 54.37 53.31 52.78 50.13 48.27 45.88 37.93 33.68 29.17 27.85 27.05

0.40 74.80 25.19 28.38 29.97 31.29 30.50 32.62 32.09 29.97 29.97 36.33 32.36 35.01 32.89 32.09 29.70 27.05 25.19 25.72 25.72 25.46 24.18

0.35 70.29 20.15 20.15 17.77 17.24 16.97 16.44 17.50 15.91 14.58 16.97 16.18 22.54 21.48 19.62 19.36 19.89 19.89 19.62 20.68 22.01 22.01

0.30 55.70 10.07 10.07 8.75 9.01 9.01 7.69 7.95 7.42 7.42 7.42 6.89 7.16 7.16 7.16 7.95 14.85 14.85 15.11 15.34 15.64 15.34

0.25 32.36 1.32 1.32 1.32 0.79 1.06 1.06 0.79 0.79 0.79 1.32 1.32 2.38 2.38 2.38 2.12 2.12 2.91 2.91 2.64 2.65 2.65

0.20 8.75 0.26 0.26 0.26 0.26 0.26 0.26 0.53 0.53 0.53 0.53 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 1.85

0.15 2.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

0.10 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.26 0.26 0.26 0.26 0.26

ξ

Jaccard 

measure

Average retrieval accuracy percentage

Tversky coefficient at parameter α
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Table 2: Number of spectra with no hits on Extended Chlorinated data set with varying
parameter values at different thresholds.

 

 

 

 

 

 

 

 

 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.90 300 298 294 294 287 287 281 281 270 266 264 264 258 230 224 192 166 145 119 94 53 32

0.85 271 252 248 257 255 256 248 222 222 215 214 183 172 153 130 127 105 94 74 43 18 11

0.80 258 237 208 207 201 201 202 168 156 148 146 150 126 115 99 88 88 65 46 26 11 8

0.75 218 195 163 163 152 141 140 139 118 118 102 99 86 80 80 61 56 40 21 10 7 7

0.70 153 130 127 128 110 106 103 98 95 83 78 76 74 57 55 42 30 19 10 7 6 6

0.65 121 96 93 97 90 79 79 76 71 69 67 54 52 39 36 26 17 7 5 5 2 0

0.60 86 65 66 64 61 59 61 59 50 49 47 35 34 22 20 8 2 1 1 1 0 0

0.55 76 51 50 48 48 37 36 37 34 26 24 23 13 8 6 0 0 0 0 0 0 0

0.50 54 31 34 34 32 31 22 20 18 10 9 4 4 0 0 0 0 0 0 0 0 0

0.45 47 28 27 18 16 15 15 6 8 4 3 2 0 0 0 0 0 0 0 0 0 0

0.40 23 13 13 13 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0.35 8 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.30 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ξ

Jaccard 

measure

Number of spectra with no hits 

Tversky coefficient at parameter α

S3



Table 3: Average retrieval accuracy percentage on Micromass data set with varying param-
eter values at different thresholds.

 

 

 

 

 

 

 

 

 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.90 0.00 8.06 6.11 5.00 3.89 3.33 2.22 1.67 0.56 0.56 0.00 0.00 0.56 0.56 0.56 1.11 1.67 1.67 6.39 15.00 39.68 67.81

0.85 0.00 9.17 8.89 7.50 5.83 4.17 3.61 3.61 3.61 2.50 2.50 2.78 2.22 2.78 2.78 3.89 6.94 12.50 19.17 35.88 62.59 68.40

0.80 0.56 10.28 9.72 9.44 9.17 8.61 6.39 5.83 5.83 6.39 5.28 4.72 5.28 6.39 10.28 14.17 18.61 22.96 37.45 57.18 69.07 67.54

0.75 2.22 12.78 12.22 11.39 10.83 11.67 10.56 10.28 9.72 9.72 9.72 11.94 14.44 18.33 21.02 25.14 32.78 45.60 57.27 70.05 70.83 60.33

0.70 3.61 14.91 15.28 15.00 14.44 15.28 15.28 16.57 17.96 21.57 22.73 23.84 25.42 29.63 36.67 46.11 51.16 60.37 68.84 72.41 69.06 53.46

0.65 7.50 17.82 19.07 19.72 21.57 21.76 22.27 24.49 25.05 29.49 33.29 37.36 40.56 47.18 51.99 58.94 62.87 69.40 72.18 70.26 65.25 47.51

0.60 11.94 22.18 24.21 25.65 27.13 31.57 36.39 38.84 42.18 43.61 46.11 52.18 57.08 62.22 63.52 67.41 69.21 71.25 70.09 65.66 55.15 41.53

0.55 22.27 32.50 36.62 39.72 41.16 44.91 46.71 49.21 53.33 59.03 61.90 62.82 63.61 66.48 68.24 68.24 69.63 69.21 64.68 60.08 50.56 38.88

0.50 33.89 43.33 46.25 50.37 53.84 56.67 59.31 60.19 63.33 63.66 65.05 66.25 67.96 68.01 68.61 68.56 65.58 64.51 59.99 52.37 45.42 28.83

0.45 45.28 47.36 50.74 53.89 57.73 60.42 63.15 65.19 66.02 67.59 67.82 67.92 68.05 66.80 65.48 64.12 61.65 57.24 52.63 45.69 38.44 27.64

0.40 59.49 47.44 53.43 56.81 58.80 59.26 61.53 62.14 63.94 66.07 65.12 64.41 63.01 61.58 60.01 56.46 53.14 49.28 43.67 39.39 30.14 25.14

0.35 66.02 47.65 50.16 53.73 54.97 56.89 56.22 57.01 57.41 56.45 56.77 56.41 55.25 53.27 50.83 47.84 44.67 40.72 34.64 29.97 24.25 21.09

0.30 68.51 41.96 44.33 47.37 48.87 49.99 50.54 50.54 50.53 49.57 48.52 46.57 45.68 43.46 41.44 37.81 33.40 29.86 26.85 22.77 19.64 16.05

0.25 63.39 35.52 36.85 37.64 40.41 39.80 40.03 41.00 40.72 39.59 38.87 36.56 35.28 31.01 28.79 26.10 23.32 20.99 19.40 17.07 15.30 13.03

0.20 53.26 27.42 26.51 26.25 25.95 26.82 26.70 26.80 25.82 26.08 24.34 23.43 21.90 21.07 19.51 18.16 17.22 15.86 14.27 13.37 12.31 12.01

0.15 39.71 18.62 18.25 17.79 17.22 16.85 16.52 16.16 15.67 15.19 14.99 14.34 13.84 13.29 12.75 12.21 11.75 11.38 11.02 10.82 10.57 10.28

0.10 8.93 12.36 12.04 11.79 11.51 11.21 11.05 10.93 10.72 10.51 10.28 10.17 9.99 9.85 9.75 9.68 9.62 9.54 9.44 9.38 9.35 9.33

ξ

Jaccard 

measure

Average retrieval accuracy percentage

Tversky coefficient at parameter α

S4



Table 4: Number of spectra with no hits on Micromass data set with varying parameter
values at different thresholds.

 

 

 

 

 

 

 

 

 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.90 90 82 84 85 86 87 88 88 89 89 89 89 89 89 89 88 88 88 83 74 46 9

0.85 89 80 80 82 84 86 86 86 86 87 87 87 87 87 87 85 83 76 67 50 21 3

0.80 89 77 78 78 79 79 81 82 82 82 83 84 83 80 76 71 67 62 48 25 10 1

0.75 87 73 74 74 75 74 75 76 76 75 75 72 69 65 63 58 51 39 23 11 3 0

0.70 86 65 67 68 68 66 66 65 64 61 60 58 57 52 46 37 29 19 9 4 1 0

0.65 79 59 61 61 60 59 58 57 56 52 48 44 41 33 28 20 15 8 4 2 0 0

0.60 72 42 52 53 53 49 44 41 38 37 35 28 23 17 14 9 6 3 2 1 0 0

0.55 60 27 31 36 37 35 33 30 26 20 17 14 11 8 6 4 2 1 0 0 0 0

0.50 47 10 14 16 18 18 17 15 12 10 8 7 5 3 1 0 0 0 0 0 0 0

0.45 36 3 6 6 5 4 6 5 5 3 2 1 0 0 0 0 0 0 0 0 0 0

0.40 19 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.35 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.30 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ξ

Jaccard 

measure

Number of spectra with no hits 

Tversky coefficient at parameter α

S5




