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Abstract. The Support Vector Machine (SVM) has emerged in recent yearsas
a popular approach to the classification of data. One problemthat faces the user
of an SVM is how to choose a kernel and the specific parameters for that kernel.
Applications of an SVM therefore require a search for the optimum settings for a
particular problem. This paper proposes a classification technique, which we call
the Genetic Kernel SVM (GK SVM), that uses Genetic Programming to evolve a
kernel for a SVM classifier. Results of initial experiments with the proposed tech-
nique are presented. These results are compared with those of a standard SVM
classifier using the Polynomial or RBF kernel with various parameter settings.

1 Introduction

The SVM is a powerful machine learning tool that is capable ofrepresenting non-linear
relationships and producing models that generalise well tounseen data. SVMs initially
came into prominence in the area of hand-written character recognition [1] and are now
being rapidly applied to many other areas, e.g. text categorisation [2, 3] and computer
vision [4]. An advantage that SVMs have over the widely-usedArtificial Neural Net-
work (ANN) is that they typically don’t possess the same potential for instability as
ANNs do with the effects of different random starting weights [5].

Despite this, using an SVM requires a certain amount of modelselection. According
to Cristianiniet al. [6], “One of the most important design choices for SVMs is the
kernel-parameter, which implicitly defines the structure of the high dimensional feature
space where a maximal margin hyperplane will be found. Too rich a feature space would
cause the system to overfit the data, and conversely the system might not be capable of
separating the data if the kernels are too poor.” However, before this stage is reached
in the use of SVMs, the actual kernel must be chosen and, as theexperimental results
of this paper show, different kernels may exhibit vastly different performance. This
paper describes a technique which attempts to alleviate this selection problem by using
genetic programming (GP) to evolve a suitable kernel for a particular problem domain.
We call our technique the Genetic Kernel SVM (GK SVM).

Section 2 outlines the theory behind SVM classifiers with a particular emphasis on
kernel functions. Section 3 gives a very brief overview of genetic programming. Section
4 describes the proposed technique for evolution of SVM kernels. Experimental results
are presented in Section 5. Some related research is described in Section 6. Finally,
Section 7 presents the conclusions.



2 Support Vector Machine Classification

The problem of classification can be represented as follows.Given a set of input-output
pairsZ = {(x1, y1), (x2, y2), . . . , (xℓ, yℓ)}, construct a classifier functionf that maps
the input vectorsx ∈ X onto labelsy ∈ Y . In binary classification the set of labels
is simply Y = {−1, 1}. The goal is to find a classifierf ∈ F which will correctly
classify new examples(x, y), i.e.f(x) = y for examples(x, y), which were generated
under the same probability distribution as the data [7]. Binary classification is frequently
performed by finding a hyperplane that separates the data, e.g. Linear Discriminant
Analysis (LDA) [8]. There are two main issues with using a separating hyperplane:

1. The problem of learning this hyperplane is an ill-posed one because several differ-
ent solutions (hyperplanes) may exist, some of which may notgeneralise well to
the unseen examples.

2. The data might not be linearly separable.

SVMs tackle the first problem by finding the hyperplane that realises the maximum
margin of separation between the classes [9]. A representation of the hyperplane solu-
tion used to classify a new samplexi is:

f(x) = 〈w · xi〉 + b (1)

where〈w · xi〉 is the dot-product of the weight vectorw and the input sample, and
b is a bias value. The value of each element ofw can be viewed as a measure of the
relative importance of each of the sample attributes for theclassification of a sample. It
has been shown that the optimal hyperplane can be uniquely constructed by solving the
following constrained quadratic optimisation problem [10]:

Minimise 〈w · w〉 + C
∑ℓ

i=1
ξi (2a)

subject to

{

yi(〈w · w〉 + b) ≥ 1 − ξi, i = 1, . . . , ℓ

ξi ≥ 0, i = 1, . . . , ℓ
(2b)

This optimisation problem minimises the norm of the vectorw which increases
the flatness(or reduces the complexity) of the resulting model and thereby improves
its generalisation ability. Withhard-marginoptimisation the goal is simply to find the
minimum〈w ·w〉 such that the hyperplanef(x) successfully separates allℓ samples of
the training data. The slack variablesξi are introduced to allow for finding a hyperplane
that misclassifies some of the samples (soft-marginoptimisation) as many datasets are
not linearly separable. The complexity constantC > 0 determines the trade-off between
the flatness and the amount by which misclassified samples aretolerated. A higher value
of C means that more importance is attached to minimising the slack variables than to
minimising〈w ·w〉. Rather than solving this problem in its primal form of (2a) and (2b)
it can be more easily solved in its dual formulation [9]:

Maximise W (α) =
∑ℓ

i=1
αi −

1

2

∑ℓ

i,j=1
αiαjyiyj〈xi · xj〉 (3a)



subject toC ≥ αi ≥ 0,
∑ℓ

i=1
αiyi = 0 (3b)

Instead of findingw andb the goal now is find the vectorα and bias valueb, where
eachαi represents the relative importance of a training samplei in the classification of
a new sample. To classify a new sample, the quantityf(x) is calculated as:

f(x) =
∑

i

αiyi〈x · xi〉 + b (4)

whereb is chosen so thatyif(x) = 1 for anyi with C > αi > 0. Then, a new sample
xs is classed as negative iff(xs) is less than zero and positive iff(xs) is greater than
or equal to zero. Samplesxi for which the correspondingαi are non-zero are known as
support vectorssince they lie closest to the separating hyperplane. Samples that are not
support vectors have no influence on the decision function. In (3b)C places an upper
bound (known as the box constraint) on the value that eachαi can take. This limits the
influence of outliers, which would otherwise have largeαi values [9].

Training an SVM entails solving the quadratic programming problem of (3a) and
(3b) and there are many standard techniques that could be applied to SVMs including
the Newton method, conjugate gradient and primal-dual interior-point methods [9]. For
the experiments reported here the SVM implementation uses the Sequential Minimisa-
tion Optimisation (SMO) algorithm of Platt [11].

2.1 Kernel Functions

One key aspect of the SVM model is that the data enters the above expressions (3a
and 4) only in the form of the dot product of pairs. This leads to the resolution of
the second problem mentioned above, namely that of non-linearly separable data. The
basic idea with SVMs is to map the training data into a higher dimensional feature
space via some mappingφ(x) and construct a separating hyperplane with maximum
margin there. This yields a non-linear decision boundary inthe original input space.
By use of a kernel function,K(x, z) = 〈φ(x) · φ(z)〉, it is possible to compute the
separating hyperplane without explicitly carrying out themap into feature space [12].
Typical choice for kernels are:

– Polynomial Kernel:K(x, z) = (1 + 〈x · z〉)d

– RBF Kernel:K(x, z) = exp(−||x−z||2

2σ2 )

– Sigmoid Kernel:K(x, z) = tanh(〈x, z〉 − θ)

Each kernel corresponds to some feature space and because noexplicit mapping
to this feature space occurs, optimal linear separators canbe found efficiently in fea-
ture spaces with millions of dimensions [13]. An alternative to using one of the pre-
defined kernels is to derive a custom kernel that may be suitedto a particular problem,
e.g. the string kernel used for text classification by Lodhiet al. [14]. To ensure that a
kernel function actually corresponds to some feature spaceit must be symmetric, i.e.
K(x, z) = 〈φ(x) · φ(z)〉 = 〈φ(z) · φ(x)〉 = K(z, x). Typically, kernels are also re-
quired to satisfy Mercer’s theorem, which states that the matrix K = (K(xi, xj))

n
i,j=1



must be positive semi-definite, i.e. it has no non-negative eigenvalues [9]. This condi-
tion ensures that the solution of (3a) and (3b) produces a global optimum. However,
good results have been achieved with non-Mercer kernels, and convergence is expected
when the SMO algorithm is used, despite no guarantee of optimality when non-Mercer
kernels are used [15].

3 Genetic Programming

A GP is an application of the genetic algorithm (GA) approachto derive mathematical
equations, logical rules or program functions automatically [16]. Rather than represent-
ing the solution to a problem as a string of parameters, as in aconventional GA, a GP
usually uses a tree structure, the leaves of which representinput variables or numerical
constants. Their values are passed tonodes, at the junctions of branches in the tree,
which perform some numerical or program operation before passing on the result fur-
ther towards the root of the tree. The GP typically starts offwith a random population
of individuals, each encoding a function or expression. This population is evolved by
selecting better individuals for recombination and using their offspring to create a new
population (generation). Mutation is employed to encourage discovery of new individ-
uals. This process is continued until some stopping criteria is met, e.g. homogeneity of
the population.

4 Genetic Evolution of Kernels

The approach presented here combines the two techniques of SVMs and GP, using the
GP to evolve a kernel for a SVM. The goal is to eliminate the need for testing various
kernels and their parameter settings. With this approach itmight also be possible to
discover new kernels that are particularly useful for the type of data under analysis. The
main steps in this procedure are:

1. Create a random population of kernel functions, represented as trees — we call
thesekernel trees

2. Evaluate the fitness of each individual by building an SVM from the kernel tree and
test it on the training data

3. Select the fitter kernel trees as parents for recombination
4. Perform random mutation on the newly created offspring
5. Replace the old population with the offspring
6. Repeat Steps 2 to 5 until the population has converged
7. Build final SVM using the fittest kernel tree found

TheGrow method [17] is used to initialise the population of trees, each tree being
grown until no more leaves could be expanded (i.e. all leavesare terminals) or until a
preset initial maximum depth (2 for the experiments reported here) is reached. Rank-
based selection is employed with a crossover probability of0.9. Mutation with proba-
bility 0.2 is carried out on offspring by randomly replacinga sub-tree with a newly gen-
erated (via Grow method) tree. To prevent the proliferationof massive tree structures,



pruning is carried out on trees after crossover and mutation, maintaining a maximum
depth of 12. In the experiments reported here, five populations are evolved in paral-
lel and the best individual over all populations is selectedafter all populations have
converged. This reduces the likelihood of the procedure converging on a poor solution.

4.1 Terminal & Function Set

In the construction of kernel trees the approach adopted wasto use the entire sample
vector as input. An example of a kernel tree is shown in Figure1 in Section 5. Since a
kernel function only operates on two samples the resulting terminal set comprises only
two vector elements:x andz. The evaluation of a kernel on a pair of samples is:

K(x, z) = 〈treeEval(x, z) · treeEval(z, x)〉 (5)

The kernel is first evaluated on the two samplesx andz. These samples are swapped
and the kernel is evaluated again. The dot-product of these two evaluations is returned
as the kernel output. This current approach produces symmetric kernels, but does not
guarantee that they obey Mercer’s theorem. Ensuring that such a condition is met would
add considerable time to kernel fitness evaluation and, as stated earlier, using a non-
Mercer kernel does not preclude finding a good solution.

The use of vector inputs requires corresponding vector operators to be used as func-
tions in the kernel tree. The design employed uses two versions of the+,− and×
mathematical functions:scalarandvector. Scalar functions return a single scalar value
regardless of the operand’s type, e.g.x ∗scal z calculate the dot-product of the two vec-
tors. For the two other operators (+ and−) the operation is performed on each pair
of elements and themagnitudeof the resulting vector is returned as the output. Vector
functions return a vector provided at least one of the inputsis a vector. For the vec-
tor versions of addition and subtraction (e.g.x +vect z) the operation is performed on
each pair of elements as with the scalar function, but in thiscase the resulting vector is
returned as the output. No multiplication operator that returns a vector is used. If two
inputs to a vector function are scalar (as could happen in therandom generation of a
kernel tree) then it behaves as the scalar operator. If only one input is scalar then that
input is treated as a vector of the same length as the other vector operand with each
element set to the same original scalar value.

4.2 Fitness Function

Another key element to this approach (and to any evolutionary approach) is the choice
of fitness function. An obvious choice for the fitness estimate is the classification error
on the training set, but there is a danger that this estimate might produce SVM kernel
tree models that are overfitted to the training data. One alternative is to base the fitness
on a cross-validation test (e.g. leave-one-out cross-validation) in order to give a better
estimation of a kernel tree’s ability to produce a model thatgeneralises well to unseen
data. However, this would obviously increase computational effort greatly. Therefore,
our solution (after experimenting with a number of alternatives) is to use a tiebreaker to
limit overfitting. The fitness function used is:



fitness(tree) = Error, with tiebreaker:fitness =
∑

αi ∗ R2 (6)

This firstly differentiates between kernel trees based on their training error. For ker-
nel trees of equal training error, a second evaluation is used as a tiebreaker. This is based
on the sum of the support vector values,

∑

αi (αi = 0 for non-support vectors). The ra-
tionale behind this fitness estimate is based on the following definition of the geometric
margin of a hyperplane,γ [9]:

γ = (
∑

i∈sv

αi)
− 1

2 (7)

Therefore, the smaller the sum of theαi’s, the bigger the margin and the smaller the
chance of overfitting to the training data. The fitness function also incorporates a penalty
corresponding toR, the radius of the smallest hypersphere that encloses the training
data in feature space.R is computed as [9]:

R = max
1≤i≤ℓ

(K(xi, xi)) (8)

whereℓ is the number of samples in the training dataset. This fitnessfunction therefore
favours a kernel tree that produces a SVM with a large margin relative to the radius of
its feature space.

5 Experimental Results

Table 1 shows the performance of the GK SVM classifier compared with the two most
commonly used SVM kernels, Polynomial and RBF, on a number ofdatasets. (These
are the only datasets with which the GK SVM has been evaluatedto date.) The first
four datasets contain the Raman spectra for 24 sample mixtures, made up of different
combinations of the following four solvents: Acetone, Cyclohexanol, Acetonitrile and
Toluene; see Hennessyet al. [18] for a description of the dataset. The classification
task considered here is to identify the presence or absence of one of these solvents in a
mixture. For each solvent, the dataset was divided into a training set of 14 samples and
a validation set of 10. The validation set in each case contained 5 positive and 5 nega-
tive samples. The final two datasets, Wisconsin Breast Cancer Prognosis (WBCP) and
Glass2, are readily available from the UCI machine learningdatabase repository [19].
The results for WBCP dataset show the average classificationaccuracy based on a 3-
fold cross validation test on the whole dataset. Experiments on the Glass2 dataset use a
training set of 108 instances and a validation set of 55 instances.

For all SVM classifiers the complexity parameter,C, was set to 1. An initial pop-
ulation of 100 randomly generated kernel trees was used for the WBCP and Glass2
datasets and a population of 30 was used for finding a model forthe Raman spectra
datasets. The behaviour of the GP search differed for each dataset. For the spectral
datasets, the search quickly converged to the simple solution after an average of only 5
generations, whereas the WBCP and Glass2 datasets requiredan average of 17 and 31
generations, respectively. (As stated earlier, five populations are evolved in parallel and
the best individual chosen.)



Classifier Dataset
Polynomial AcetoneCyclohexanolAcetonitrile TolueneWBCP Glass2

Kernel - Degreed

1 100.00 100.00 100.00 90.00 78.00 62.00
2 90.00 90.00 100.00 90.00 77.00 70.91
3 50.00 90.00 100.00 60.00 86.00 78.18
4 50.00 50.00 50.00 50.00 87.00 74.55
5 50.00 50.00 50.00 50.00 84.00 76.36

RBF Kernel - σ

0.0001 50.00 50.00 50.00 50.00 78.00 58.18
0.001 50.00 90.00 50.00 50.00 78.00 58.18
0.01 60.00 80.00 50.00 60.00 78.00 59.64
0.1 50.00 50.00 50.00 50.00 78.00 63.64
1 50.00 50.00 50.00 50.00 81.00 70.91
10 50.00 50.00 50.00 50.00 94.44 83.64
100 50.00 50.00 50.00 50.00 94.44 81.82

GK SVM 100.00 100.00 100.00 80.00 93.43 87.27

Table 1.Comparison of GK SVM with Polynomial and RBF Kernel SVM

The results clearly demonstrate both the large variation inaccuracy between the
Polynomial and RBF kernels as well as the variation between the performance of mod-
els using the same kernel but with different parameter settings: degreed for the Poly-
nomial kernel andσ for the RBF kernel. The RBF kernel performs poorly on the spec-
tral datasets but then outperforms the Polynomial kernel onthe Wisconsin Breast Can-
cer Prognosis and Glass2 datasets. For the first three spectral datasets, the GK SVM
achieves 100% accuracy, each time finding the same simple linear kernel as the best
kernel tree:

K(x, z) = 〈x · z〉 (9)

For the Toluene dataset, the GK SVM manages to find a kernel of higher fitness (ac-
cording to the fitness function detailed in Section 4.2) thanthe linear kernel, but which
happens to perform worse on the test dataset. One drawback with the use of these spec-
tral datasets is that the small number of samples is not very suitable for a complex search
procedure such as used in GK SVM. A small training dataset increases the danger of
an evolutionary technique, such as GP, finding a model that fits the training set well but
performs poorly on the test data.

On the Wisconsin Breast Cancer Prognosis dataset, the GK SVMperforms better
than the best Polynomial kernel (d = 4). The best kernel tree found during the final
fold of the 3-fold cross-validation test is shown in Figure 1. This tree represents the
following kernel function:

K(x, z) = 〈(x −scal (x −scal z)) · (z −scal (z −scal x))〉 (10)

The performance of the GK SVM on this dataset demonstrates its potential to find
new non-linear kernels for the classification of data. The GKSVM does, however, per-
form marginally worse than the RBF kernel on this dataset. This may be due to the



Fig. 1. Example of a Kernel found on the Wisconsin Breast Cancer Dataset

fact that the kernel trees are constructed using only 3 basicmathematical operators and
therefore cannot find a solution to compete with the exponential function of the RBF
kernel. Despite this apparent disadvantage, the GK SVM clearly outperforms either
kernel on the Glass2 dataset.

Overall, these results show the ability of the GK SVM to automatically find kernel
functions that perform competitively in comparison with the widely used Polynomial
and RBF kernels, but without requiring a manual parameter search to achieve optimum
performance.

6 Related Research

6.1 SVM Model Selection

Research on the tuning of kernel parameters or model selection is of particular relevance
to the work presented here, which is attempting to automate kernel selection. A common
approach is to use a grid-search of the parameters, e.g. complexity parameterC and
width of RBF kernel,σ [20]. In this case, pairs of (C,σ) are tried and the one with
best cross-validation accuracy is picked. A similar algorithm for the selection of SVM
parameters is presented in Staelin [21]. That algorithm starts with a very coarse grid
covering the whole search space and iteratively refines bothgrid resolution and search
boundaries, keeping the number of samples at each iterationroughly constant. It is
based on a search method from the design of experiments (DOE)field. Those techniques
still require selection of a suitable kernel in addition to knowledge of a suitable starting
range for the kernel parameters being optimised. The same can be said for the model
selection technique proposed in Cristianiniet al.[6], in which an on-line gradient ascent
method is used to find the optimalσ for an RBF kernel.



6.2 Application of Evolutionary techniques with SVM classifiers

Some research has been carried out on the use of evolutionaryapproaches in tandem
with SVMs. Fröhlichet al. [22] use GAs for feature selection and train SVMs on the
reduced data. The novelty of this approach is in its use of a fitness function based on
the calculation of the theoretical bounds on the generalisation error of the SVM. This
approach was found to achieve better results than when a fitness function based on
cross-validation error was used. A RBF kernel was used in allreported experiments.

An example of GPs and SVMs is found in Eadset al. [23], which reports on the
use of SVMs for identification of lightning types based on time series data. However,
in this case the GP was used to extract a set of features for each time series sample
in the dataset. This derived dataset was then used as the training data for building the
SVM which mapped each feature set or vector onto a lightning category. A GA was
then used to evolve a chromosome of multiple GP trees (each tree was used to generate
one element of the feature vector) and the fitness of a single chromosome was based
on the cross validation error of an SVM using the set of features it encoded. With this
approach the SVM kernel (along withσ) still had to be selected, in this case the RBF
kernel was used.

7 Conclusions

This paper has proposed a novel approach to tackle the problem of kernel selection
for SVM classifiers. The proposed GK SVM uses a GP to evolve a suitable kernel
for a particular problem. The initial experimental resultsshow that the GK SVM is
capable of matching or beating the best performance of the standard SVM kernels on
the majority of the datasets tested. These experiments alsodemonstrate the potential for
this technique to discover new kernels for a particular problem domain. Future work
will involve testing the GK SVM on more datasets and comparing its performance with
other SVM kernels, e.g. sigmoid. The effect of restricting the GP search to Mercer
kernels will be investigated. In order to help the GK SVM find better solutions, further
experimentation is also required with increasing the rangeof functions available for
construction of kernel trees, e.g. to include the exponential or tanh function.
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