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Abstract. The Support Vector Machine (SVM) has emerged in recent yasars
a popular approach to the classification of data. One protiatfaces the user
of an SVM is how to choose a kernel and the specific paramedetkdt kernel.
Applications of an SVM therefore require a search for thénopin settings for a
particular problem. This paper proposes a classificaticnnigue, which we call
the Genetic Kernel SVM (GK SVM), that uses Genetic Prograngmd evolve a
kernel for a SVM classifier. Results of initial experimentishihe proposed tech-
nique are presented. These results are compared with thaesstandard SVM
classifier using the Polynomial or RBF kernel with variousapaeter settings.

1 Introduction

The SVM is a powerful machine learning tool that is capablepfesenting non-linear
relationships and producing models that generalise welhgeen data. SVMs initially
came into prominence in the area of hand-written charaetegnition [1] and are now
being rapidly applied to many other areas, e.g. text cateafion [2, 3] and computer
vision [4]. An advantage that SVMs have over the widely-uAetificial Neural Net-
work (ANN) is that they typically don’t possess the same pbtige for instability as
ANNSs do with the effects of different random starting weigf].

Despite this, using an SVM requires a certain amount of meelektion. According
to Cristianiniet al. [6], “One of the most important design choices for SVMs is the
kernel-parameter, which implicitly defines the structuirthe high dimensional feature
space where a maximal margin hyperplane will be found. Taloaifeature space would
cause the system to overfit the data, and conversely thasysight not be capable of
separating the data if the kernels are too poor.” Howevdagrbehis stage is reached
in the use of SVMs, the actual kernel must be chosen and, axffeximental results
of this paper show, different kernels may exhibit vastifati&nt performance. This
paper describes a technique which attempts to alleviaesehection problem by using
genetic programming (GP) to evolve a suitable kernel forrsiqdar problem domain.
We call our technique the Genetic Kernel SVM (GK SVM).

Section 2 outlines the theory behind SVM classifiers with di@alar emphasis on
kernel functions. Section 3 gives a very brief overview aigfic programming. Section
4 describes the proposed technique for evolution of SVMddstrExperimental results
are presented in Section 5. Some related research is deddnitSection 6. Finally,
Section 7 presents the conclusions.



2 Support Vector Machine Classification

The problem of classification can be represented as foll@iv&n a set of input-output
pairsZ = {(x1,y1), (x2,92), - .., (e, ye)}, cOnstruct a classifier functighthat maps
the input vectorse € X onto labelsy € Y. In binary classification the set of labels
is simplyY = {—1,1}. The goal is to find a classifief € F which will correctly
classify new example@e, y), i.e. f(x) = y for examplegx, y), which were generated
under the same probability distribution as the data [7]aBjrclassification is frequently
performed by finding a hyperplane that separates the dajal mear Discriminant
Analysis (LDA) [8]. There are two main issues with using aagping hyperplane:

1. The problem of learning this hyperplane is an ill-posed because several differ-
ent solutions (hyperplanes) may exist, some of which maygeoeralise well to
the unseen examples.

2. The data might not be linearly separable.

SVMs tackle the first problem by finding the hyperplane thalises the maximum
margin of separation between the classes [9]. A representat the hyperplane solu-
tion used to classify a new samplgis:

flz) = (w-zi) +b (1)

where(w - z;) is the dot-product of the weight vectar and the input sample, and
b is a bias value. The value of each elemeniwofan be viewed as a measure of the
relative importance of each of the sample attributes foctassification of a sample. It
has been shown that the optimal hyperplane can be unique$treated by solving the
following constrained quadratic optimisation problem]f10

Minimise (w - w) + C S, & (2a)
subject to{ 6> 0i=1, .0 (2b)

This optimisation problem minimises the norm of the veaiowhich increases
the flatness(or reduces the complexity) of the resulting model and thyienproves
its generalisation ability. Withard-marginoptimisation the goal is simply to find the
minimum(w - w) such that the hyperplan@z) successfully separates &bsamples of
the training data. The slack variablgsare introduced to allow for finding a hyperplane
that misclassifies some of the samplesf{-marginoptimisation) as many datasets are
not linearly separable. The complexity constant- 0 determines the trade-off between
the flatness and the amount by which misclassified sampléslarated. A higher value
of C' means that more importance is attached to minimising thek slariables than to
minimising (w - w). Rather than solving this problem in its primal form of (2ajig2b)
it can be more easily solved in its dual formulation [9]:

Maximise W(a) = Ele o — %Eij:l o0y (T - ) (3a)



subject toC > a; > 0,30, iy = 0 (3b)

Instead of findingy andb the goal now is find the vecter and bias valué, where
eachq; represents the relative importance of a training samplehe classification of
a new sample. To classify a new sample, the qualftity) is calculated as:

flz) = Zaiyi<x ‘i) +b (4)

whereb is chosen so thay; f(x) = 1 for anyi with C > «; > 0. Then, a new sample
xs is classed as negative ffz,) is less than zero and positivefifz;) is greater than
or equal to zero. Samples for which the corresponding; are non-zero are known as
support vectorsince they lie closest to the separating hyperplane. Sartipdé are not
support vectors have no influence on the decision functio(3b) C' places an upper
bound (known as the box constraint) on the value that eadan take. This limits the
influence of outliers, which would otherwise have largevalues [9].

Training an SVM entails solving the quadratic programmingbem of (3a) and
(3b) and there are many standard techniques that could iecpp SVMs including
the Newton method, conjugate gradient and primal-duatiotgoint methods [9]. For
the experiments reported here the SVM implementation UmeS¢quential Minimisa-
tion Optimisation (SMO) algorithm of Platt [11].

2.1 Kernel Functions

One key aspect of the SVM model is that the data enters theeadxqwessions (3a
and 4) only in the form of the dot product of pairs. This leadghe resolution of
the second problem mentioned above, namely that of noaslyneeparable data. The
basic idea with SVMs is to map the training data into a higheremsional feature
space via some mappingx) and construct a separating hyperplane with maximum
margin there. This yields a non-linear decision boundarth& original input space.
By use of a kernel functionk (z, z) = (¢(x) - ¢(z)), it is possible to compute the
separating hyperplane without explicitly carrying out thap into feature space [12].
Typical choice for kernels are:

— Polynomial KernelK (z,z) = (1 + (z - 2))¢
— RBF Kernel:K (z, z) = exp(=12=21C)
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— Sigmoid Kernel:K (z, z) = tanh({z,z) — 0)

Each kernel corresponds to some feature space and becaesglivit mapping
to this feature space occurs, optimal linear separatordedound efficiently in fea-
ture spaces with millions of dimensions [13]. An alternatie using one of the pre-
defined kernels is to derive a custom kernel that may be statagarticular problem,
e.g. the string kernel used for text classification by Logthal. [14]. To ensure that a
kernel function actually corresponds to some feature sjianest be symmetric, i.e.
K(x,z) = (¢(x) - #(2)) = (¢(2) - ¢(x)) = K(z,z). Typically, kernels are also re-
quired to satisfy Mercer’s theorem, which states that th&im& = (K (zi, z;))}



must be positive semi-definite, i.e. it has no non-negaiiyerealues [9]. This condi-
tion ensures that the solution of (3a) and (3b) produces bagloptimum. However,
good results have been achieved with non-Mercer kernadsc@mvergence is expected
when the SMO algorithm is used, despite no guarantee of afitinwvhen non-Mercer
kernels are used [15].

3 Genetic Programming

A GP is an application of the genetic algorithm (GA) approtxtierive mathematical
equations, logical rules or program functions automdti¢ab]. Rather than represent-
ing the solution to a problem as a string of parameters, acongentional GA, a GP
usually uses a tree structure, the leaves of which repragautvariables or numerical
constants. Their values are passedatales at the junctions of branches in the tree,
which perform some numerical or program operation befossipg on the result fur-
ther towards the root of the tree. The GP typically startsnatfi a random population
of individuals, each encoding a function or expressionsupulation is evolved by
selecting better individuals for recombination and usingjrtoffspring to create a new
population (generation). Mutation is employed to encoardigcovery of new individ-
uals. This process is continued until some stopping caiterimet, e.g. homogeneity of
the population.

4 Genetic Evolution of Kernels

The approach presented here combines the two techniquéévid 8nd GP, using the
GP to evolve a kernel for a SVM. The goal is to eliminate thedfee testing various
kernels and their parameter settings. With this approaahight also be possible to
discover new kernels that are particularly useful for theetgf data under analysis. The
main steps in this procedure are:

1. Create a random population of kernel functions, repteskeas trees — we call
thesekernel trees

2. Evaluate the fithess of each individual by building an S\Yohi the kernel tree and
test it on the training data

. Select the fitter kernel trees as parents for recombimatio

. Perform random mutation on the newly created offspring

. Replace the old population with the offspring

. Repeat Steps 2 to 5 until the population has converged

. Build final SVM using the fittest kernel tree found

~NOoO ol h~h W

The Grow method [17] is used to initialise the population of treeghefree being
grown until no more leaves could be expanded (i.e. all leavegerminals) or until a
preset initial maximum depth (2 for the experiments repbttere) is reached. Rank-
based selection is employed with a crossover probabiliy.®f Mutation with proba-
bility 0.2 is carried out on offspring by randomly replaciagub-tree with a newly gen-
erated (via Grow method) tree. To prevent the proliferaibmassive tree structures,



pruning is carried out on trees after crossover and mutatiintaining a maximum
depth of 12. In the experiments reported here, five populatare evolved in paral-
lel and the best individual over all populations is selecéér all populations have
converged. This reduces the likelihood of the procedurg@ming on a poor solution.

4.1 Terminal & Function Set

In the construction of kernel trees the approach adoptedtavase the entire sample
vector as input. An example of a kernel tree is shown in FiduireSection 5. Since a
kernel function only operates on two samples the resulgénginal set comprises only
two vector elements: andz. The evaluation of a kernel on a pair of samples is:

K(z,z) = (treeEval(x, z) - treeEval(z, x)) 5)

The kernel is first evaluated on the two sampiesnd z. These samples are swapped
and the kernel is evaluated again. The dot-product of thesevaluations is returned
as the kernel output. This current approach produces syritnkernels, but does not
guarantee that they obey Mercer’s theorem. Ensuring tithtagondition is met would
add considerable time to kernel fithess evaluation and,asdsearlier, using a non-
Mercer kernel does not preclude finding a good solution.

The use of vector inputs requires corresponding vectoratpes to be used as func-
tions in the kernel tree. The design employed uses two wessib the+, — and x
mathematical functionscalarandvector Scalar functions return a single scalar value
regardless of the operand’s type, ecg*“* » calculate the dot-product of the two vec-
tors. For the two other operators @nd —) the operation is performed on each pair
of elements and thmagnitudeof the resulting vector is returned as the output. Vector
functions return a vector provided at least one of the inmuts vector. For the vec-
tor versions of addition and subtraction (exg+-?“* z) the operation is performed on
each pair of elements as with the scalar function, but inghge the resulting vector is
returned as the output. No multiplication operator thatinreg a vector is used. If two
inputs to a vector function are scalar (as could happen imghdom generation of a
kernel tree) then it behaves as the scalar operator. If amyimput is scalar then that
input is treated as a vector of the same length as the othémrvegerand with each
element set to the same original scalar value.

4.2 Fitness Function

Another key element to this approach (and to any evolutapproach) is the choice
of fitness function. An obvious choice for the fithess estemathe classification error
on the training set, but there is a danger that this estimaibtrproduce SVM kernel
tree models that are overfitted to the training data. Onemative is to base the fithess
on a cross-validation test (e.g. leave-one-out crosskatdin) in order to give a better
estimation of a kernel tree’s ability to produce a model therteralises well to unseen
data. However, this would obviously increase computatieffart greatly. Therefore,
our solution (after experimenting with a number of alteives) is to use a tiebreaker to
limit overfitting. The fitness function used is:



fitness(tree) = Error, with tiebreaker;fitness = Z a; * R? (6)

This firstly differentiates between kernel trees based ein thaining error. For ker-
nel trees of equal training error, a second evaluation id ase tiebreaker. This is based
on the sum of the support vector valu®s; (o; = 0 for non-support vectors). The ra-
tionale behind this fithess estimate is based on the follgwéfinition of the geometric
margin of a hyperplane; [9]:

y=0" )73 (7)
1€Esv
Therefore, the smaller the sum of the's, the bigger the margin and the smaller the
chance of overfitting to the training data. The fitness fuorctilso incorporates a penalty
corresponding tak, the radius of the smallest hypersphere that encloses dhenty
data in feature spac& is computed as [9]:
R= fg%(K(% ;) (8)
wherel is the number of samples in the training dataset. This fithesgion therefore

favours a kernel tree that produces a SVM with a large maggative to the radius of
its feature space.

5 Experimental Results

Table 1 shows the performance of the GK SVM classifier congpath the two most
commonly used SVM kernels, Polynomial and RBF, on a numbelatdsets. (These
are the only datasets with which the GK SVM has been evaluateidte.) The first
four datasets contain the Raman spectra for 24 sample ragstarade up of different
combinations of the following four solvents: Acetone, Mfutxanol, Acetonitrile and
Toluene; see Hennesgy al. [18] for a description of the dataset. The classification
task considered here is to identify the presence or absdrreof these solvents in a
mixture. For each solvent, the dataset was divided intoiaitrgset of 14 samples and
a validation set of 10. The validation set in each case coeteb positive and 5 nega-
tive samples. The final two datasets, Wisconsin Breast Garognosis (WBCP) and
Glass2, are readily available from the UCI machine leardiatbase repository [19].
The results for WBCP dataset show the average classificatioaracy based on a 3-
fold cross validation test on the whole dataset. Experisientthe Glass2 dataset use a
training set of 108 instances and a validation set of 55 nt&s.

For all SVM classifiers the complexity parametét, was set to 1. An initial pop-
ulation of 100 randomly generated kernel trees was usechidM{BCP and Glass2
datasets and a population of 30 was used for finding a modeh&Raman spectra
datasets. The behaviour of the GP search differed for eatseta For the spectral
datasets, the search quickly converged to the simple salafter an average of only 5
generations, whereas the WBCP and Glass2 datasets requisarage of 17 and 31
generations, respectively. (As stated earlier, five pdjria are evolved in parallel and
the best individual chosen.)



Classifier Dataset
Polynomial  |AcetongCyclohexano|Acetonitrile | Toluenel WBCP|Glass
Kernel - Degreed
1 100.00 100.00 100.00 | 90.00 | 78.00| 62.00
2 90.00 90.00 100.00 90.00 | 77.00| 70.91
3 50.00 90.00 100.00 60.00 | 86.00| 78.18
4 50.00 50.00 50.00 50.00 | 87.00| 74.55
5 50.00 50.00 50.00 50.00 | 84.00| 76.36
RBF Kernel - o
0.0001 50.00 50.00 50.00 50.00 | 78.00| 58.18
0.001 50.00 90.00 50.00 50.00 | 78.00| 58.18
0.01 60.00 80.00 50.00 60.00 | 78.00| 59.64
0.1 50.00 50.00 50.00 50.00 | 78.00| 63.64
1 50.00 50.00 50.00 50.00 | 81.00| 70.91
10 50.00 50.00 50.00 50.00 | 94.44| 83.64
100 50.00 50.00 50.00 50.00 | 94.44| 81.82
GK SVM 100.00 100.00 100.00 80.00 | 93.43| 87.27

Table 1. Comparison of GK SVM with Polynomial and RBF Kernel SVM

The results clearly demonstrate both the large variatioacituracy between the
Polynomial and RBF kernels as well as the variation betwkemerformance of mod-
els using the same kernel but with different parametenmggstidegree for the Poly-
nomial kernel and for the RBF kernel. The RBF kernel performs poorly on the spec
tral datasets but then outperforms the Polynomial kern¢herwisconsin Breast Can-
cer Prognosis and Glass2 datasets. For the first three apéatasets, the GK SVM
achieves 100% accuracy, each time finding the same sim@arlikernel as the best
kernel tree:

K(z,z) = (z-2) 9)

For the Toluene dataset, the GK SVM manages to find a kernabbghfitness (ac-
cording to the fitness function detailed in Section 4.2) ttienlinear kernel, but which
happens to perform worse on the test dataset. One drawb#tkwiuse of these spec-
tral datasets is that the small number of samples is not witatde for a complex search
procedure such as used in GK SVM. A small training dataseeases the danger of
an evolutionary technique, such as GP, finding a model tisathfét training set well but
performs poorly on the test data.

On the Wisconsin Breast Cancer Prognosis dataset, the GK S&ffdrms better
than the best Polynomial kernel € 4). The best kernel tree found during the final
fold of the 3-fold cross-validation test is shown in FigureThis tree represents the
following kernel function:

K(.T,Z) _ <($ __scal (l‘ __scal Z)) . (Z __scal (Z __scal I))> (10)

The performance of the GK SVM on this dataset demonstratgmtiential to find
new non-linear kernels for the classification of data. The 3KV does, however, per-
form marginally worse than the RBF kernel on this datasets Ty be due to the



Kernel

K(x2) = < (x2))(z-"zx))>

Fig. 1. Example of a Kernel found on the Wisconsin Breast Cancerdeata

fact that the kernel trees are constructed using only 3 Imaatbhematical operators and
therefore cannot find a solution to compete with the expaakfunction of the RBF
kernel. Despite this apparent disadvantage, the GK SVMrlgleaitperforms either
kernel on the Glass2 dataset.

Overall, these results show the ability of the GK SVM to audtically find kernel
functions that perform competitively in comparison witte thidely used Polynomial
and RBF kernels, but without requiring a manual parametaicheto achieve optimum
performance.

6 Related Research

6.1 SVM Model Selection

Research on the tuning of kernel parameters or model sefhdastof particular relevance
to the work presented here, which is attempting to autonetegk selection. A common
approach is to use a grid-search of the parameters, e.g.lexitgparameteiC’ and
width of RBF kernel,s [20]. In this case, pairs of({,0) are tried and the one with
best cross-validation accuracy is picked. A similar altjoni for the selection of SVM
parameters is presented in Staelin [21]. That algorithmisstaith a very coarse grid
covering the whole search space and iteratively refines dpidhresolution and search
boundaries, keeping the number of samples at each iteradgioghly constant. It is
based on a search method from the design of experiments (M) hose techniques
still require selection of a suitable kernel in addition tmlvledge of a suitable starting
range for the kernel parameters being optimised. The sambe&aaid for the model
selection technique proposed in Cristiar@hal. [6], in which an on-line gradient ascent
method is used to find the optimalfor an RBF kernel.



6.2 Application of Evolutionary techniques with SVM classfiers

Some research has been carried out on the use of evolutiapprgaches in tandem
with SVMs. Frohlichet al. [22] use GAs for feature selection and train SVMs on the
reduced data. The novelty of this approach is in its use ohad# function based on
the calculation of the theoretical bounds on the genetalis@rror of the SVM. This
approach was found to achieve better results than when aditioaction based on
cross-validation error was used. A RBF kernel was used irepthrted experiments.

An example of GPs and SVMs is found in Eaglsal. [23], which reports on the
use of SVMs for identification of lightning types based ondiseries data. However,
in this case the GP was used to extract a set of features fortene series sample
in the dataset. This derived dataset was then used as thmgraata for building the
SVM which mapped each feature set or vector onto a lightnatggory. A GA was
then used to evolve a chromosome of multiple GP trees (eaetwias used to generate
one element of the feature vector) and the fitness of a singlentosome was based
on the cross validation error of an SVM using the set of fezgiirencoded. With this
approach the SVM kernel (along with still had to be selected, in this case the RBF
kernel was used.

7 Conclusions

This paper has proposed a novel approach to tackle the pnatiiernel selection
for SVM classifiers. The proposed GK SVM uses a GP to evolveitatda kernel
for a particular problem. The initial experimental resugtow that the GK SVM is
capable of matching or beating the best performance of #relatd SVM kernels on
the majority of the datasets tested. These experimentslafsonstrate the potential for
this technique to discover new kernels for a particular fmebdomain. Future work
will involve testing the GK SVM on more datasets and compitis performance with
other SVM kernels, e.g. sigmoid. The effect of restrictihg 1GP search to Mercer
kernels will be investigated. In order to help the GK SVM firettler solutions, further
experimentation is also required with increasing the ramfgiinctions available for
construction of kernel trees, e.qg. to include the expoaéatitanh function.
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